AD-A162 578  EXACT DVNRHICRLLV CONVERGENT CALCULATIONS OF THE
’ FREQUENCY-DEPENDENT DENS (U) GEORGIA UNIV RTHENS DEPT
OF PHYSICS AND ASTRONOMY J HONG ET AL
UNCLASSIFIED NBB@14-85-K-8365 F/G 12/1




o BT RTIE AR T 9 8 AN VTR

LBME A RSN o Nl YoV < i X X X e SRR e S R R R R R R R K OIS T

18
1ol Py
N
E1

e o e e
"

-

e |

LA 2

"_l
2y

w

‘:r

K j28 B25 :
| 0 Bks k=

- - g2
;- —————
: w I3.6
Qe m— L
& o 2o

- [ F{TYvY
—

] = fi.L8
Iy —— R
& =
3 1.25 il 1.4 fWie
X —_— —_— =
- = = =
L
9.5
| 'ht‘
1N
o MICROCOPY RESOLUTION TEST CHART
Nt-: NATIONAL BUREAU OF STANDARDS-1963-A
3 :

*l
Lt
-"_::1
hoa
Y
1

=V RRRRan |

. A St e b T ST, ’M".":’ At DR el
a "N L.i":)s;j;m_‘-\ .;'r;‘..r_-. LT i %m e “"ll.“\.'i’ :




T 4 A Py g VW VL WU NU KL VN e OV K Wy

Unclassified
SI_CUR\TY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEF O O RN
1. REPCAT NUMBER 2. GOVT ACCESSION NOJ 3. RECIMIENT'S CATALOG NUMBER
Technical Report No. 9 hoA /6075 70
4. TITLE (end Subtitle) ' S. TYPE OF REPOART & PERIOD COVERED

EXACT DYNAMICALLY CONVERGENT Technical R
CALCULATIONS OF THE FREQUENCY-DEPENDENT echnical Report

DENSITY RESPONSE FUNCTION 6. PERFORMING ORG. REPORT NUMBER
bene———— e —— S ——_—————— e
7. AUTHOR(®) 3. CONTRACT OR GRANT NUMBIR(s)

J. Hong and M. Howard L.ee NO00014-85-K-0365

3. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGNAM ELEMENT, PROJECT, TASK |
AREA & WORK UNIT NUMBERS

University of Georgia
Department of Physics
Athens, GA 30602 NR 051-861

11. CONTROLLING OFFICE NAME AND ADORESS . 12. REPORT OATE
Office of Naval Research November 5, 1985
Department of the Navy 13. NUMBER OF PAGES

Arlington, VA 22217 10
4. MONITORING AGENCY NAME & ADDRESS(!! dliferent from Controlling Office) 1S. SECURITY CLASS. (of this report)

AD-A162 570

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

S T S ——
16. DISTRISUTION STATEMENT (of this Report)

This documeitt has been approved for public release and sale; its distribution
is unlimited.

. .,
17. DISTRIBUTION snin:ur (of the abstract entered In Block 20, if different from Report) (\U—
D '®
R Y ™

~ A general expression for the response function is derived by the method
of recurrence relations. Memory effects appear as corrections to the dynamic
RPA form. The dynamic structure for the 3d electron gas is calculated to third
order and compared with Ai data at a large wave vector. Also shown is the
dynamic local-field term. (=

o 3
18. SUPPLEMENTARY NOTES NS LA
To be published in Phys. Rev. Lett. 7 B
a (25 Nov. 85)
O 19. KEY WORDS (Continue on reverse side il necessary and identily by block number)
(- response function
LJ memory
|/ plasmas
CI: ! recurrence relations
L metals
c. . §20. ABSTRACT (Continue on reverse side If seery and (dentify by block number)
)

DD ':2:"” 1473 zoimion oF 1 NOV 68 1S ORsSOLETE

ifi
SN 0102- LF- 014- 6601 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

O, . LAY 1 ‘_; LT TN '«_.'-_;" RS ‘:'vfz
£$}$A‘k :,M;L :.Z{&ﬁ,a{l.ﬁﬂ\.';\:l‘t' ) >




OFFICE OF NAVAL RESEARCH

Contract N00014-84-K-0365
Task No. NR 051-861
TECHNICAL REPORT NO. 9

Exact Dynamically Convergent Calculations of the
Frequency-Dependent Density Response Function
by
J. Hong and M. Howard Lee

Prepared for Publication

. [
n

Physical Review Letters rye rTkl T

. By

: Disiribntion/v
T oavnil Tt

—— Loa

| e
sist | B

Un.versity of Georgia . A_ l \
\ -

A

Department of Physics
Athens, Georgia

November 5, 1985

Reproduction in whole or in part is permitted for
any purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited.

i)
Pl
_i_
;:I. . o N T (‘;.'vt T T PE IO R PR Ry P PRt R Ry PR f\ 'Lq_ "\ SGIAS
S AN ﬂﬂm‘ﬂ? }‘!\"‘!i‘ I dLPC N ' b o L SN € L2 PR ENE IRTE RN, \ v V& Bl

h
)

e T T

4=

ACATS

85 12 16 (4

RIS
> b T



: TETECETY TR TR TR L eIy AT L PO RNy WL I, " r,

B To apoear in Phys. Rev, Lett. (18 or 25 Nov. 1985)

4y

i

%: EXACT DYNAMICALLY CONVERGENT CALCULATIONS OF THE
AR

Ca

2 FREQUENCY-DEPENDENT DENSITY RESPONSE FUNCTION
s

B J. Hong

Department of Physics Education, Seoul National University, Korea

o o

M. Howard Lee
Physics Department, University of Georgia, Athens, GA 30602

X

s

.

)

A

)

L

s

_ ABSTRACT

X A general expression for the response function is derived
r by the method of recurrence relations. Memory effects appear as
R corrections to the dynamic RPA form. The dynamic structure for
"

S the 3d electron gas is calculated to third order and compared

; with Al data at a large wave vector. Also shown is the dynamic local-
b field term.
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3 t The dynamic response in strongly interacting homogeneous

20
B many-fermion systems has drawn considerable attention recently.1
L

fﬁ Let such a many-body system be described by H = H, +V, where
[\ s
g‘ L o

Ho represents the kinetic energy and V the interaction energy,

and the response in the system by the response function xk(w),

pﬁ} where k and w are, respectively, wave vector and frequency (W=1l).

;% It is well known that the response function may be put in the

Jb form

:’ X (@ = %, () 71+ At x ) () (1)

2

S where x, (0) (w) is the response function due to H, and A, (w) some

I unknown function of V. Various dynamic RPA theories are equivalent

%g to taking Ak(w)=Ak(0)EAk.2 For example, Ak = Vy gives the simple

ﬁj RPA where Vi is the two-body interaction, and Ak = vk(l - Gk)

;; gives the generalized RPA where Gk is a local field term effective

¢ﬁ over the Thomas-Fermi 1ength.3’4 There are large numbers of RPA
;

based studies and they have been routinely used to interpret.

experiments.5

The dynamic RPA's, however, can break down especially

in the regime of metallic densities at large wave vectors. Clearly,

‘fg one needs to restore the frequency dependence e.qg., Ak(w)= Vi (1 - Gk(u
%% Several people have obtained asymptotic conditions for Gk(m).s"9

I Otherwise, there are at present no exact general expressions known. ;
i?g For a 3d Coulomb gas Devreese et allo and Holas et al11 have calcu- j
g;; lated Gk(w) by some approximate technigues. Unfortunately, they %
& find in their calculations several unphysical divergences. This ;
é%i sort of situation has limited our understanding of the dynamic |
3”' structure of metals at large wave vectors. In particular, whether
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the observed fine structure arises from multi-pair excitations
or from some other strong correlations remain unresolved.4
In this Letter, we obtain a general expression for Ak(u) by the
method of recurrence relt:i.ons12 and perform exact dynamically-
convergent calculations based on it. Our‘results are compared
with Al data. R

The time evolution of the density ;;igtuation operator p.
3;§av(t) £10 5
where<{fv} forms a complete set of basis vectors spanning the

may be given an orthogonal expansion viz., pk(t) =}

d-dimensional Hilbert space of Py and a_'s are autocorrelation

v
functions. There exist recurrence relations RRI and RRII,

respectively, for fv's and av's:

£

v+1 = fv + Av £

v-1 ' (2)
Bysr Bu41 (B) = a,(e) + 2, ,(2) (3)

where 0 < v < d4d-1, fv= ilH, fv]' a = dav/dt, Av = (fv'fv)/(fv-l'fv-l)
where the inner product means the Kubo scalar product and by
definition f_

=0, a_, = O and Ao = 1. According to the method

1l
of recurrence relations, one obtains the basis vectors fv's by

RRI (2) from which the recurrants Av's. One can then deduce the

autocorrelation functions av's by RRII (3) and obtain the time
13

evolution of P
If we choose fo = Py then by linear response theory

a (t) = (P (£ Py)/ (pyrP,), which is the relaxation fugction,

and Alal(t)=xk(t)/xk' where x, = (o ,p ). If v=0 in (4, we get

b,a,(t) = -éo(t). (4a)

By applying the Laplace transform operator T and with ao(t=0) =],




v we obtain

ﬁk{ | Ajay(z) =1 -2z a(z) . | (4b)

< - where av(z) = T[av(t)]. Hence, from (4b),

sl a(z) = (z + ap (27} | (5)
5&% where bl(z) =.a1(z)/a°(z). Now combining (4b) and (5) and using
%ml the identity Alal(z) = x(2)/x, suppressing k-dependence altogether,
A we get

3 x(z) _ AP

Sy X  z + Alblik) | ' (6)

‘;; Since eqg. (7) is valid for any Hermitian model, it also

% .
'%{ ) _ Since fl = fb from (2), we have fl = i[H,pk] = i[Ho,pk] = fl(o).: i

o applies to Ho (ideal version). Now consider A

\

.t

Hence, .

'
———.—.

A A (o)

! “.:_;“- 1 _

%i We divide (6) by its ideal version and obtain
)

O

Ll -

X (z) ‘= (h) 1 (8a)
xtzy b (2) [ 2 + 4b, (2) ]

z + 8%p, 19 (z)

e
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Observe that (8b) is in the form of (1). By using the ideal
version of (6), we find from (8a,b) the desired expression:

Az) = [T yer=1y , 2 1
1'

1l

- (x (by (2071 = [ (2))7]

1l

A+ 2(2). (9)

The first bracketed term A is z-independent. Thus, the RPA

theories are valid, i.e., A(z) = A, if and only if b, (z) = b1(°)(z§a

. (]
—- - ——t— .. = oo
,

We shall now examine the 2-dependent - part. nglier,
bl(z) was introduced in place of al(z)/ao(z). According to the
method of recurrence relations12 there is aétually a whole family

of bv(t) = T-llbv(z)], 1< v <d-1,which define the time evolution
d-=1 -

x for o, as F, (t) =ﬁ£qu“(t) £, -

The random force lies in a linear manifold of the Hilbert space

of the generalized random force F

of p,. The autocorrelation functions b,'s, sometimes referred

to as the memory functions, also satisfy a recurrence relation:
Av+1bv+1(t) = -bv(t) + bv_ltt) (10)

where b _(t) = 0 and 1v<d-1. That is, for example,

bl(t) = bl(Az,A3,....,Ad_l; t) . . (11)
(o) (/mf‘ to interac tron
Hence, if Avav y 2 £ v £ d-1, memory effect§A§re always present

in tﬁe response function and are manifested through z dependence

in A(z).13

The recurrants Av's, which are relative norms of the basis

- vectors, are model-dependent. They are basic elements of the

dynamic structure and their form shapes the time evolution. 1In
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some special physical regimes of certain many-body models they
can be calculated to any order and one can use them to obtain

the iemory function from RRII (10).13

For noninteracting systems
e.g., an ideal 3d electron gas, the recurrants are in effect

known to all orders at T = O since xéo)(Zéim) is analytically

given in the ground state. But for interacting systems generally,

only the first few orders of the recurrants have been accurately -
calculated presentiy. Hence, one cannot obtain their memory
function by (10) and one cannot use the general expression (9)
to explicitly calculate e.g., Im xk(w) for metal densities at
large wave vectors. We propose here a techhiqﬁe by which one
can use (9) to calculate A(z) term-by-term up to the available
order of the recurrants given that the "ideal" recurrants are
known to all orders. |

‘"From (9) and (11) we see that

A= oy} fa, O, v 22 (12)

assuming @ = », Hence we can write

A= 1lim x_~
n
n -+ (13)
where
(o) (o) , [,(0)] .
An = A(Azoootbn An+1.ooA¢ ’ {Av }, 2) . (14)

The process of replacing A by Arlhas the following significance?
If Aq is used in place of X in (9), the rgsulting x(2z) satisfies
the frequency moment sum rules exactly up to and including the

2n+l st. It satisfies the higher moments to the accuracy of
16

the substitution of Am by Alf‘c') » M>n+l,




By this process one can obtain an expression for the response
function in terms of the recurrants which is exact to a given
order. One can continue this process to the highest available
recurrant. An infinite-order éxpression evidently is equivalent
to an exact expression for the response function. |
Using (9) and RRII, we can systematically obtain An e.g.

(15)

x93, = (n, - ny R(2)Q(2)/(1 + ny R(z))

' NI
etc. where nj Aj/Aj. 1, 3 2,3 |
a(z) = x4 (z) - 22/ (@)1

(o)

R(z) = 1-v0(2), v =4,

Observe that A -» Al gives the generalized RPA. For k = kF, where
kF is the Fermi vector, multipair excitations exist which are
contained in A2A3 etc. They can, therefore, contribute to fhe
response function via frequency dependence beyond first order;
The convergence of our term-by-term calculations should be
relatively rapid since our procedure uses infinite»continued

fractions at all stages which are known to give good convergence.17

Fala x>

i

Finite order calculations are meaningful if x(o)(z)# 0.

To illustrate our technique, we calculate the dynamic

LT

structure factor Sk(m)=-ﬂ-1 Im x(z=im) for the 3d electron gas

T

»
-
o

to third order, the highest order possible based on the presently

’

available recurrants which are A1A2A3. For our calculations we

PN ] (R ' t ¥ ~, "D ‘
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set k = 1.6 kF and ré = 2.0 (cf. Al IS = 2,07). For these values
we find: N, = 0.1297, n, = 0.0364, and Y = 0.5619.

Shown in Fig. 1A is the first-order corresponding to the

Ad generalized RPA (dotted line). It shows almost no fine structure.
NS The second order (dash-dot line) and the third-order (solid line)
begin to show some structure. The calculated amplitudes are all

absolute. Observe that in our finite order calculations Sk(w)=0
18
FO
(solid line) is compared with the simple RPA (dotted line) and
19

for w > 5.76 £ In Fig. 1B the third-order dynamic structure

Al data (dashed line). The experimental amplitude is adjusted
e to coincide with our third-order calculated one. The simple
RPA~-calculated amplitude is absolute. ﬁe opserve that the third-
order calculated structure factor shows some resemblarce to the
- experimental curve especially in the shoulder. The peak position
is much closer to the experimental peak position thén that of

) the simple RPA.ZO He

: Using the definition.ék(w)= vy (1-G, (w) )one can also extract
. the corresponding frequenc;-dependent local field term Gk(m).
These results are shown in Fig. 2. The first-order (dotted line)
is absent in Im Gk(m)since Al = 0. The second-order (dash-dot

lines) and third order (solid lines) are well-behaved, containing

no infinities. In Re G (w)there are cusp-like peaks at w =0:5 ¢_
{F . 5. 26 >4 k . . 1o CP
3 and B+5-£,. It is interesting to note that Devreese et al™, Helas ¢t a
Ch i) -
L
i?ﬁ encountered divergences in their calculation of Gk(m)at.app:oaimaeekr
e these frequencies.
'”‘,}_‘.'x
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Figure Captions

s 1. Dynamic structure vs frequency. A. first-order (dotted),
second-order (dash-dot), third-order (solid). B. experimental
b (dash), simple RPA (dotted), third-order (solid). eTFemi

- energy .

fz 2. Dynamic local field correction vs frequency. First-order

N (dotted), second-order (dash-dot), third-order (solid).

2 €., Fermi energy.
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